* co-first author, † corresponding author

Preprint
  • Turning Shields into Swords: Leveraging Safety Policies for LLM Safety Testing.
    Xiaoyue Lu*, Xianglin Yang*, Haijun Liu, Kuntai Cai, Meiyi An, Jun Yuan, Yan XIAO, Jin Song Dong.
    Preprint 2025.
  • Beyond Manuals and Tasks: Instance-Level Context Learning for LLM Agents.
    Kuntai Cai, Juncheng Liu, Xianglin Yang, Zhaojie Niu, Xiaokui Xiao, Xing Chen.
    Preprint 2025.
  • Sparse Layer Sharpness-Aware Minimization for Efficient Model Fine-Tuning.
    Yifei Cheng, Xianglin Yang, Li Shen.
    Preprint 2025.
  • TraceAegis: Securing LLM-based Agents via Hierarchical and Behavioral Anomaly Detection.
    Jiahao Liu, Bonan Ruan, Xianglin Yang, Zhiwei Lin, Yan Liu, Yang Wang, Tao Wei and Zhenkai Liang.
    Preprint 2025.
  • Turning Bias into Bugs: Bandit-Guided Style Manipulation Attacks on LLM Judges.
    Xianglin Yang, Bryan Hooi, Gelei Deng, Tianwei Zhang, Jin Song Dong.
    Preprint 2025.
  • Make Your Guard Learn to Think: Defending Against Jailbreak Attacks with Safety Chain-of-Thought.
    Xianglin Yang, Gelei Deng, Jieming Shi, Tianwei Zhang, Jin Song Dong.
    Preprint 2025.
  • Neural Surveillance: Live-Update Visualization of Latent Training Dynamics.
    Xianglin Yang, Jin Song Dong.
    Preprint 2024.
2025
  • When Audio and Text Disagree: Benchmarking Text Bias in Large Audio-Language Models under Cross-Modal Inconsistencies.
    Cheng Wang, Gelei Deng, Xianglin Yang, Han Qiu, Tianwei Zhang.
    EMNLP 2025.
2023
  • DeepDebugger: An Interactive Time-Travelling Debugging Approach for Deep Classifiers.
    Xianglin Yang, Yun Lin, Yifan Zhang, Linpeng Huang, Jin Song Dong, Hong Mei.
    ESEC/FSE 2023 .
  • Thompson Sampling with Less Exploration is Fast and Optimal.
    Tianyuan Jin, Xianglin Yang, Xiaokui Xiao, Pan Xu.
    ICML 2023 .
2022
  • Debugging and Explaining Metric Learning Approaches: An Influence Function Based Perspective.
    Ruofan Liu, Yun Lin, Xianglin Yang, Jin Song Dong.
    NeurIPS 2022 .
  • Temporality Spatialization: A Scalable and Faithful Time-Travelling Visualization for Deep Classifier Training.
    Xianglin Yang, Yun Lin, Ruofan Liu, Jin Song Dong.
    IJCAI 2022 . [code] [website]
  • Inferring Phishing Intention via Webpage Appearance and Dynamics: A Deep Vision Based Approach.
    Ruofan Liu, Yun Lin, Xianglin Yang, Siang Hwee Ng, Dinil Mon Divakaran, Jin Song Dong.
    USENIX Security 2022 . [code] [website]
  • DeepVisualInsight: Time-Travelling Visualization for Spatio-Temporal Causality of Deep Classification Training.
    Xianglin Yang*, Yun Lin*, Ruofan Liu, Zhenfeng He, Chao Wang, Jin Song Dong, and Hong Mei.
    AAAI 2022. [oral presentation, 4.5%]. [paper] [video] [code] [website]

© 2025 YANG Xianglin | Powered by Skeleton and Jiarui Gan's template | Updated 2025-10-22